Press Room

1997: The Birth of the Camera Phone from Conscious Minds on Vimeo.

On June 11th, 1997, Philippe Kahn created the first camera phone solution to share pictures instantly on public networks. The impetus for this invention was the birth of Kahn's daughter, when he jerry-rigged a mobile phone with a digital camera and sent photos in real time. In 2016 Time Magazine included Kahn's first camera phone photo in their list of the 100 most influential photos of all time.

A baby girl and the camera phone were born 20 years ago

Larry Magid, June 8, 2017

Twenty years ago Sunday, Philippe and Sonya Kahn spent 18 hours at a hospital in Santa Cruz, waiting for their baby Sophie to be born. Like nearly all expectant fathers, Philippe Kahn planned to take a picture of the new baby but, instead of waiting till he got home to distribute the photo to friends online, he wanted to do it directly from the hospital. But that was in 1997 when there were no camera phones. So he invented one.

Kahn, who previously founded Borland International and Starfish Software, had already configured a home server to store images, automatically notify friends about new images and send them a link so they could view them via the web. But there was no way to get the pictures to the server directly from a camera.

Philippe Kahn took the first ever cell phone picture of his then-newborn daughter Sophie in Santa Cruz County
Philippe Kahn took the first ever cell phone picture of his then-newborn daughter Sophie in Santa Cruz County.

Kahn had a Casio QV-10, the first consumer-grade digital camera with an LCD display that, he said, “made pixelated but nice 320 by 240 pictures.” He also had a Motorola StarTAC “flip” phone, so during Sonia’s 18 hours of labor, he thought about finding a way to connect the two so he could upload a picture of the baby directly from the hospital.

“It was clear that I had a hardware problem. Short of taking the phone apart I needed to interface with the phone,” he said in an interview.

He also needed to connect a laptop to control the camera/phone connection. Phones then couldn’t connect to either laptops or cameras but – as he pondered the problem – he remembered he had a StarTAC speaker phone kit in his car which, of course, could connect to the phone. With his wife’s blessing, he “literally ran down to my car, took out the whole speaker phone kit and started working frantically at creating a software/firmware/hardware interface” that enabled him to send the pictures from the laptop, which was connected to both the camera and the phone.

As luck would have it, he finished this Rube Goldberg device just in time for the arrival of Sophie and snapped what was not only Sophie’s first picture, but the first picture taken by what eventually evolved into the camera phone.

Kahn’s server sent links to this image to friends, family and colleagues and he started hearing from people who were impressed at how quickly he got this picture from the hospital to their screens, which made him realize he had a potential product.

“Immediately it became clear that we needed a CMOS (complementary metal–oxide–semiconductor) sensor and a micro controller unit integrated in phones. So we built these prototypes that were interfaced with the exact software/server/service-infrastructure,” he said.

With a prototype in hand, Kahn tried to convince the CEOs of Kodak and Polaroid to create an integrated phone and camera “but none of them could imagine that the phone would be the integrating device.” He said that they “hired consultants, market pundits and they all collectively came to the conclusion that phones would be focused on voice and that cameras would become wireless.” Both Kodak and Polaroid later went bankrupt.

“They totally missed the paradigm shift,” said Kahn.

Unable to find a partner in the U.S., Kahn took his idea to Japan but had no success with big players like NTT Docomo. But he did find interest from a small carrier called J-Phone, which, in 1999 partnered with Sharp along with Kahn’s company LightSurf, to design a “Picture-Mail phone.” In 2002 Kahn’s company worked with Sprint and Casio on the first U.S. camera phone.

Sprint loaned me one of those first phones to review. I picked it up at their office on Wilshire Boulevard in Los Angeles and, after leaving the office, I found a parking ticket on my car. Convinced that it was an unjust ticket, I used the phone to document my surroundings to prove why I shouldn’t have to pay the fine. The Los Angeles Parking Citations Bureau disagreed and I didn’t bother to appeal, but it nevertheless convinced me of the power of always having a camera in your pocket.

Today, I routinely use my camera phone to help me remember where I park my car. I take pictures of luggage tags, receipts and the price tags of items I’m thinking of buying. Of course, like most people, I also use my phone to photograph people, animals and scenery. Truth be told, the pictures I take with my smartphone often look just as good as the ones I take with my $1,000 camera.

Kahn’s current company, Santa Cruz-based Fullpower, develops cloud-based technology to power sleep tracking, analog smartwatches and other “Internet of Things” products.

Both my kids were born before Kahn built that camera phone so I wasn’t able to use a phone to transmit pictures of my kids’ births in near real time. But millions of fathers have since instantly shared pictures of their newborns to loved ones far and near. Happy 20th birthday to both the camera phone and Sophie Kahn.

View the original at Mercury News.

An Introduction to Understanding Sleep

Philippe Kahn, January 18, 2017

Introduction: As my colleague Mark Christensen and I were sailing across oceans double-handed (just two of us on a fast high tech sailboat), chasing and beating records, we discovered that we were both so busy that neither of us slept much more than 30 minutes at a time for weeks on end. And it worked. I mean we were performing. Why did it work? We decided to use the scientific method and to build sleep monitors and a software system that would monitor both our sleep and wake performance.

Wired Magazine on Sleep and Sailing

Philippe Kahn, An Introduction to Understanding Sleep

What we learned defied common wisdom. Mark and I were back in an evolutionary environment with no constraints but that of Mother Nature, and our whole beings were adapting and shedding all sorts of misconceptions. Just like intermittent fasting makes us healthier, there is magic to understanding sleep budgeting and optimization. Here I share some of our findings based on over 100,000 nautical miles sailed across oceans around the world.

I hope that you find this first installment useful and look forward to your feedback.

Your Sleeptracker® statistics and what is "normal"

Preface: We are all different. However we can learn a lot from the Sleeptracker® community, comparing our own sleep to "people like me" to help us gain a better understanding of our sleep. So these "normal" values and ranges simply reflect Sleeptracker® stats for 90% of the population, 90% of the time. If you are an elite athlete or have a chronic condition you may find yourself out of range for some of the stats. It’s important to understand where you are and make small improvements over time. Be patient with yourself.

Total Sleep is not the time spent in bed, but the time when you were actually asleep. A restful night’s sleep for most people ranges from 6 to 9 hours. Statistically, females on average tend to sleep a little more than males. Everyone is different. What counts is how rested you feel and making small improvements. For example, if you find initially you sleep for 6 hours on average, try to set your goal for 6 hours 15 minutes. Iterate until you feel more rested.

Time to Sleep is the time elapsed between starting a sleep recording and actually falling asleep. If you fall asleep in less then 3 minutes you are probably sleep deprived. If it takes you more than 30 minutes to fall asleep (once you’ve decided to fall asleep, not if you are simply reading a great book), it would be good to look at factors which can impact time to sleep such as when and what you ate and drank before bed, caffeine consumption, and how much exercise you’ve had and when that occurred. It helps to finish eating and drinking a couple of hours before bed, stretch your muscles, and keep your bedroom cool and quiet.

Light Sleep, REM Sleep and Deep Sleep: Sleep occurs in waves, with a crest called REM (rapid eye movement) when we dream, and a trough called deep sleep when we are in maximum recovery mode, together with several intermediate stages. All stages of the "sleep wave" are necessary, and sleep typically comes in multiple waves. Depending on the individual, each wave of sleep lasts 45 to 90 minutes and and we experience between four to six waves of sleep (complete cycles) per night. The highest percentage of deep sleep is experienced during the earlier waves.

Awake time displays how long your "awake events" are during the night. Often, we don’t even remember some of these awake events if they are short. However if you are awake for more than 12 minutes, it may be a good idea to get up and do something relaxing. Pascal, Newton, Mozart, Debussy, Einstein, Nadia Boulanger and many other geniuses would actually sleep in "two shifts": they called it "First Sleep"and "Second Sleep" and claim they did their best work in the middle of the night. That’s hard to do in a modern world with standardized work hours.

Wakeup displays the number of awake events you experienced during your sleep. If they are short, you may not remember them. Up to 3 to 5 awake events is quite normal and with young children or pets some of us experience several awake events each night.

Sleep Score (range 1 -100): Sleeptracker® makes it easy to rate your sleep from day one, with your "Sleep Score". For example, there are people with a sleep score of 50 out of 100 initially, who after a few months of using Sleeptracker® improved their sleep score to 75, and continue to improve. The ideal sleeper will look for a sleep score of 90+ over time. But many healthy individuals function well at 75 or above.

Sleep Efficiency is the percentage of time spent sleeping. For example spending 8 hours in bed and 6 of those hours asleep is a sleep efficiency of 75%. Some people start at 50%, and after a few months reach a sleep efficiency of 75% and continue improving incrementally. With an 85% sleep efficiency or higher you are doing well.

Percentage of Sleep Goal: This is a great tool to incrementally increase your total sleep time. Set your initial sleep goal at a realistic time for you, then increase your goal by 10% until you beat it, then iterate. Unrealistic goals are demotivating. Small incremental wins are empowering.

Average Breathing Rate is the number of breaths you take per minute. Sleeptracker® measures your breathing rate continuously throughout the night and produces an easy to understand line graph. For healthy individuals between age 16 and 65, resting respiratory rate between 10-22 breaths per minute are considered normal. After about 67 years of age it’s common for respiration rate to increase by up to 20%. Snoring and sleep apnea affect breathing rate, as well as illness, pain or fever.

Average Heart Rate is the number of beats your heart takes in a minute. Sleeptracker® measures your heart rate continuously throughout the night and produces an easy to understand line graph. A heart rate between 40 and 85 is considered healthy. Snoring and sleep apnea affect heart rate, as well as alcohol, caffeine and sugar consumption, illness, pain or fever. Sleep is your recovery mechanism, and you will notice the more restful your sleep, the lower your heart rate when you wake up. Throughout the night as sleep rebuilds your body, your heart rate decreases in small steady increments.

What is sleep and why do we, and mammals, sleep?

Sleep is the recovery mechanism for all of us. It’s when we rebuild our bodies, our muscles, cleanse our organs, and rewire our brain. Sleep is necessary. The Sleeptracker® monitor helps us understand and improve our sleep. Here is an example: Sleeptracker® will automatically measure your heart rate through the night, and you can see that as your cardiovascular system repairs and rebuilds during sleep, by the morning your resting heart rate is often significantly lower for a healthy individual.

How do I sleep?

Sleeptracker® makes it easy to rate my sleep from day one, with your "Sleep Score". For example, there are people with a sleep score of 50 out of 100 initially who after a few months of using Sleeptracker® improved their sleep score to 75, and continue to improve after that. The ideal sleeper will look for a sleep score of 90+ over time. But many healthy individuals function well at 75 or above.

What does how I sleep mean?

Practically, how we sleep in the long-term has an important impact on how we perform at work or at the gym, on our mood, and on our overall health.

What are sleep cycles, and how do they affect my sleep?

Sleep occurs in waves, with a crest called REM (rapid eye movement) when we dream, and a trough called deep sleep when we are in maximum recovery mode, together with several intermediate stages. All those stages of the "sleep wave" are necessary, and sleep typically comes in multiple waves. Depending on the individual, each wave of sleep lasts 45 to 90 minutes and and we experience between four to six waves of sleep (complete cycles) per night. The highest percentage of deep sleep is experienced during the earlier waves.

What does it mean to improve my sleep?

The consequences of improving sleep are profound and measurable over time, even as we age. Improving sleep means improving overall health, work and physical performance, mood, and even relationships. There are only upsides to improving your sleep.

How can I personally improve my sleep?

You can improve your sleep by making small incremental changes. The power of Sleeptracker® is that we can quantify the effect of these little changes, and the Sleeptracker® AI-powered engine will deliver personalized insights based on your own sleep performance, as well as based on the sleep performance of "people like you" who are part of the Sleeptracker® community.

Can I really improve my sleep that much with Sleeptracker®?

In a nutshell, yes! Let us consider the amount of time that we, as humans, sleep. We sleep for a third of our life. At the same time, we live in a sleep deprived world. Due to the demands of our modern world, it’s not feasible to increase the amount of time we spend in bed attempting to sleep. Instead, we need to better understand our habits to improve the efficiency, performance, and overall quality of our sleep. Now consider a night where you spend 8 hours in bed, but only sleep for six of those hours; your sleep efficiency is 75%. If we increase that efficiency by only 13 percent, your six hours of sleep becomes seven hours. This increase gains you a full hour of sleep. Sleeptracker® can help you improve the quality of your seep so you can sleep more, and sleep better.

What happens in the first 30 days when I use Sleeptracker®?

From the first day you start monitoring your sleep, Sleeptracker® will be helpful. Yet, the first step to understanding how to sleep better is understanding how you sleep. In the first 30 days of use, Sleeptracker® gets to know you, gives you personalized insights to help you improve your own sleep over time, and understands how you are sleeping compared to "people like you".

What does periodization of sleep mean?

By carefully analyzing several million nights of sleep of Mr. and Ms. Everyone, Sleeptracker® has come to the conclusion that sleep performance comes in waves, just like athletic performance. There will be times in life when our sleep performance decreases. For example if we catch the flu, tear a muscle or have other aches and pains, or if we have busy times at work. It’s important to accept and understand this fact of life, and with the help of Sleeptracker® start improving our sleep score again, patiently a little bit at a time. Many things in life seem to go in waves and in cycles. While Sleeptracker® helps you improve your sleep over time, it is important to realize that improvement does not occur on a consistent continuous slope. Improvement in any realm doesn’t occur at a constant rate, but overall improvement is periodized, and consistency and daily practice make a big difference. That’s true with Sleeptracker® too.

Why is it important to store my sleep information over time as I age gracefully?

Identifying correlations and trends in long-term sleep data helps us understand how our bodies, health and habits change over time. As we age, our sleep habits change. Sudden changes in our sleep as reported by Sleeptracker® can be indicators of how something in our well-being may have changed, and provides a good reminder to continue improving our sleep performance. That’s true with any health condition and at any age. We can always make small incremental improvements to sleep. Sleeptracker® is a key to better understanding our health, and to building a healthier future.

What vital signs does Sleeptracker® monitor?

Sleeptracker® continually monitors respiration and breathing patterns, as well as fluctuations in heart rate, and qualitative and quantitative body motions.

Should I take power naps during the day?

Yes! Taking power naps is a great idea. This is completely natural, particularly if your sleep wasn’t ideally restful. In Spanish, "siesta" comes from "seis" which means “six", and in general you will notice 6 hours after waking up you will feel a bit sleepy. If you have an opportunity, try a 20-30 minute power nap to recharge; no more than 30 minutes or you risk waking up groggy.

n a consistent continuous slope. Improvement in any realm doesn’t occur at a constant rate, but overall, improvement is periodized and consistency and daily practice make a big difference. That’s true with Sleeptracker® too.

Why is it important to store my sleep information over time as I age gracefully?

Identifying correlations and trends in long-term sleep data helps us understand how our bodies, health and habits change over time. As we age, our sleep habits change. Sudden changes in our sleep as reported by Sleeptracker® can be indicators of how something in our well-being may have changed, and provides a good reminder to continue improving our sleep performance. That’s true with any health condition and at any age. We can always make small incremental improvements to sleep. Sleeptracker® is a key to better understanding our health, and to building a healthier future.

What vital signs does Sleeptracker® monitor?

Sleeptracker® continually monitors respiration and breathing patterns, as well as fluctuations in heart rate, and qualitative and quantitative body motions.

Should I take power naps during the day?

Yes! Taking power naps is a great idea. This is completely natural, particularly if your sleep wasn’t ideally restful. In Spanish, "siesta" comes from "seis" which means "six" and you will notice in general 6 hours after waking up you will feel a bit sleepy. If you have an opportunity, try a 20-30 minute power nap to recharge; no more than 30 minutes or you risk waking up groggy.

Philippe Kahn, An Introduction to Understanding Sleep

Wear Them, Forget Them, July 2013 Issue, Scientific American

A prolific inventor argues that we are on the cusp of an explosion in truly useful and unencumbering wearable & IoT devices

If you're wearing a sleep monitor that is awkward and gets in the way, you might choose not to use it, and even if you do, the act of wearing it might change the way you sleep. It's a bit like the Heisenberg uncertainty principle: the observer changes the outcome of the experiment. If asleep monitor has electrodes and wires that look like something from Frankenstein's lab, you might not wear it consistently, and the information it gathers and reports may be compromised.

In recent years wearable & IoT technology has improved drastically. Improvements in sensor technology are now making it possible to design wearable & IoT devices that are so noninvasive that we can forget we are wearing them. Inventors - myself included - are working to make sensors more accurate, smaller, with longer battery lives. The goal is to deliver great user experiences.

Sensors are rapidly evolving in important ways. As engineers, we are packing more capabilities into each sensor. We are coupling accelerometers with gyroscopes, shrinking them in size and decreasing their power consumption. We are also using new sen-sor-fusion algorithms that can make sense of all the data flowing through and among the sensors. For example, the Jawbone UP wristband, a 24-hour monitor (for which my team created hard-ware reference designs, firmware and other components) analyzes sleep and waking activity patterns. It is designed to be a step toward the "quantified self," which will improve Ms. and Mr. Everyone's health. It is meant to be fashionable and rugged, so you can keep it on in the shower. When you check your sleep patterns, you see your sleep, not the effects of wearing some strange device that disrupts your sleep.

Today's smartphones include sensors that capture images, motion, magnetic fields, geographical position and proximity, but they tend to use those sensors individually. With sensor-fusion technology', my phone could sense, say, that I'm in my car, which improves my experience significantly because my phone can automatically activate those functions that are most relevant to the situation. When I get out of my car and go jogging, or go to sleep, or do pretty much anything, my phone becomes a "context chameleon" and adapts automatically. A device like an iPhone, a SmartWatch or Google Glass could become my own personal communicator, integrated with my other wearable & IoT devices.

The technology behind such advances has existed for quite a while. Ten years ago we started developing the end-to-end components, power management systems, recommendation generators and other building blocks of the Jawbone UP wristband. Our original design back in 2005 had the wristband wirelessly synchronize with the phone and use the phone display in real time. Yet Bluetooth low-energy technology necessary to preserve battery life on the device is maturing only now. Just as it took 15 years after the invention of the camera phone for it to become ubiquitous, we arc now likewise on the cusp of ubiquitous wearable & IoT devices that serve a wide array of functions.

Some of the most promising applications of wearable & IoT technology may be in the monitoring, prevention, treatment or even cure of medical conditions. For people with chronic conditions such as obesity, sleep apnea, diabetes, heart disease or Alzheimer's disease, wearable & IoT medical devices can make a huge difference in their quality of life and provide a scalable way to help control epidemics. They present a unique opportunity to tie into a new generation of therapies, including much more efficient personalized prescription dosages and delivery. For instance, a diabetic patch that releases medicine hand in hand with an advanced activity band provides a personalized and optimal dosage while improving both the therapies and the outcomes - the next step after insulin pumps. We now have the opportunity to revolutionize many people's health with our intellectual property and technology and provide a scalable solution to a planetary challenge. PK

SCIENTIFICAMERICAN ONLIlNE
Comment on this article at ScientificAmerican.com


Click here to download the full article in PDF format